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Dripping Faucet 
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A model for the simulation of the chaotic behavior of a leaky faucet is analyzed. 
It is found that the mechanism Of simulating the breaking away of the drop is 
crucial in order to obtain the transition to chaos. Return maps and dripping spectra 
as functions of flow rate and critical parameters are obtained. 

1. I N T R O D U C T I O N  

During the last decade, following R0ssler's (1977) suggestion, many 
authors have demonstrated experimentally that a dripping water faucet might 
exhibit a chaotic transition as the flow rate is varied (Marten et  al.,  1985; 
Ntlfiez Y6pez et  al.,  1989; Wu et  al.,  1989; Wu and Scheily, 1989; Cahalan 
et  al.,  1990; Dreyer and Hickey, 1991). As far as we know, mathematical 
models that simulate carefully this behavior have not been reported in the 
literature. However, several years ago, Martien et  al. (1985) were able to 
simulate, by using a model of a simple one-dimensional nonlinear oscillator, 
some of the simpler behavior of  the leaky faucet, with good qualitative 
agreement. These authors did not make a systematical exhaustive exploration 
of  the dependence of  the model on the parameters and claimed to obtain 
return maps that only in a qualitative sense, and in limited regions of  the 
parameter space, are similar to those produced experimentally by the faucet. 
Furthermore, the mechanism by which the initial conditions for the drop 
formation were restored was not sufficiently explained. More recently, Bern- 
hardt (1991) described a simple electronic circuit that reproduces the type 
of aperiodic behavior that may be found in many physical systems, such as 
dripping faucets, magnetospheric substorms, etc. In this paper it is demon- 
strated that the only nonlinearity required to yield chaos in relaxation oscillator 
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systems is a sudden change in behavior when a threshold is reached. Bern- 
hardt's result seems to suggest that the mechanism of formation of the drop 
at the threshold is crucial in order to yield chaos in mathematical models of 
a dripping faucet. In order to clarify this point, we have considered the model 
proposed in Martien et al. (1985) and we analyzed the effects introduced by 
different mechanisms of release of the drop at threshold. The amount of 
water which is released into the falling drop can depend on several physical 
quantities at the threshold, such as the speed, the mass, or the momentum 
of the forming drop, the time of formation of the drop, etc. Moreover, as the 
drop leaves the faucet, it creates oscillations in the residue (which set the 
initial conditions for the following drop), affecting the time of release of the 
next drop, so that the successive drops are causally related. This correlation 
between successive drops can be built up into a mathematical model in several 
ways: one can, for example, set the initial conditions for the following drop 
at the nozzle, or simulate a sudden (nonzero) reduction of the residue position. 
Finally, a change of the threshold can lead to further significant modifications 
in the results of the model. 

In this paper we analyze only some of the various modalities and shapes 
of the formation of a drop. Our aim is to investigate a path that should lead 
to the establishment of the deterministic equations describing the system. In 
doing this we limit ourselves mainly to the study of the dependence of the 
model on the parameters of  the threshold: we think in fact that, owing to 
the large variety of the parameters and the richness of the chaotic patterns 
that can be obtained, the theoretical model can be improved by exploring 
mostly the mechanism of threshold that, in a certain sense, is with less 
evidence connected to the physical constraints of the process. We believe 
that an investigation of the influence of the critical parameters of the model 
and the structure of the drop formation can furnish suggestions for the estab- 
lishment of the mathematical equations describing the formation and succes- 
sive breaking of the drops. 

In Section 2, the mathematical model is explained and in Section 3 
bifurcation and return map drawings obtained with fixed values of critical 
parameters and initial conditions are shown. In Section 4, a larger variation 
of parameters is performed and effects of surface tension and temperature 
are analyzed. Finally, conclusions are presented in Section 5. 

2. MATHEMATICAL MODEL 

We start from the simple mechanical model for the dripping faucet 
proposed in Martien et al. (1985). This model consists of a mass M which 
grows linearly with time, pulling on a spring with stretch constant k. The 
spring produces a linear restoring force equal to -k_x, where x is the position 
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of the center of mass of the forming drop and the spring constant k represents 
surface tension. The damping of  the residual oscillations is included in the 
friction force -bv ,  where v = dx./dt is the speed of  the center of mass of  the 
forming drop. This unidimensional mass on a spring may be described by 
the equation 

d(Mv) 
- -  - M g  - k x -  b v  (1)  

dt 

where g is gravitational acceleration and the mass of the drop grows at a 
constant rate R, 

dM 
- R (2)  

dt 

When the downward displacement of  the water reaches a critical value xc, 
the mass is suddenly reduced by AM and the position of the remaining mass 
oscillates according to (1) and grows according to (2). The drop mass AM 
is taken proportional to the speed dx/dt of the mass at the critical distance xc. 

There is, in this model, a certain arbitrariness in the choice of  the values 
of the parameters, and so far an exhaustive exploration of the behavior of 
equation (1) in terms of  these parameters has not been given. However, one 
cannot ignore the physics, and we believe it to be convenient to take an 
initial set of  the parameters which is close to the physical ones. Two more 
aspects of the problem seem interesting: the way by means of  which (a) the 
mass of the breaking-off drop is defined and (b) the position and speed of 
the successive drop in formation are related to the variables M and v at x,.. 

The drop mass AM can be produced in several ways; we have analyzed 
the following: 

(i) AM = etMcv,. (3) 

(ii) AM = etVc (Martien et al., 1985) 

where vc and Mc are the speed and the mass at the threshold and et is a 
parameter of  proportionality to be suitably adjusted. The behavior of  the 
solutions of  equations ( t )  and (2) depends on at least four independent 
parameters g, k, b, and R. In addition to these parameters we have considered, 
within the mechanisms of  drop formation shown in relations (3), two addi- 
tional parameters: the coefficient of  proportionality et and the critical distance 
xc. In the following we will show that the values of  the last two parameters 
are crucial in order to obtain transition to chaos. In doing this we will maintain 
constant, almost everywhere, all other parameters (except, eventually, R). 

As regards the relation with the initial conditions for the residue mass 
m = Mc - AM, when a drop falls, one can attempt to place the residue at 
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the nozzle, putting x0 = 0, with the speed v0 = vc, of the previous drop 
at the threshold. Instead, we have considered two different model systems 
of the breaking drop at the critical point xc: 

(a) A spherical drop and a residue point mass (one-sphere) .  

(b) Two spherical drops, one falling off, the other forming a residue 
for the successive drop ( two-sphere) .  

Figure la shows the system of point mass and sphere; the system center 
of mass is at xc; the initial position for the residue mass is given by 

AM 
x0 = x ~ , -  r (4) 

M, 

where r = (3AM/4rrp) u3 and p is the liquid density. Figure lb shows the 
two-sphere model; with the center of mass at xc we obtain for the position 
of the residue the relation 

&M 
Xo = x,. - (rl + r 2 ) - -  (5) M,. 

where rl.2 = (3AMi.214~rp) u3 and MI = A M ,  M2 =- m = Mc - A M .  

By setting in both models v0 = Vc the total momentum P is unaffected 
by the breaking. In the following section, by choosing values of the 
parameters g, k, and b near the physical ones, corresponding to a standard 
experimental apparatus, we give an exhaustive study of the two modalities 
of the drop formation (3) with the previously suggested breaking shape 
of Fig. la. Work is in progress in order to extend the analysis to the 
breaking shape of Fig. tb (D'Innocenzo and Renna, n.d.); a preliminary 
result is given in the following. 

3. NUMERICAL SIMULATIONS 

We have set the initial values of the parameters with reference to the 
physical properties of the drops. 

As the surface tension represents a force per length, we have, for a 
w ate r  drop, a value of k roughly equal to 500 dynes/cm, while the friction 
force depends on the liquid viscosity Xl and on the eyedropper characteristics. 

A preliminary test was performed, on the basis of which we have set 
throughout k = 475 dynes/cm, b = 1 sec - I , m  = 0.01 g, and v0 = 0.10 
crn/sec. This choice is justified by the necessity of limiting the number of 
variables of the model: however, one must keep in mind that there exist other 
values of these parameters for which a sensible variation of the solutions can 
be obtained. For example, intermittencies with period doubling of a period- 



Dripping Faucet 945 

X, 

a} 

Xc 

b} 
M~- A M ~  

A M  

Fig. 1. Mechanism of drop breaking at the threshold: (a) one-sphere and (b) two-sphere models. 

3 attractor or  chaotic patterns are obtained for m = 0.10 g. In Section 4 a 
larger variation o f  parameter  values is carried out. 

Substituting the solution 

M(t) = m + Rt (6) 
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Table I. Parameters Kept Fixed 

m v o k g b x,. 

0.01 g 0. I cm/sec 475 dynes/cm 980 cm/sec 2 I g/sec 0.19 cm 

of equation (2) into equation (1) and introducing the speed v = dx /d t ,  we 
transform these equations into the equivalent system 

dr 
- - =  v ( 7 )  
d t  

MdU 
d t  = M g  - k x  - (R  + b ) v  
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Fig. 4. Dripping patterns (7",+1 versus T,) for AM ~ M,v<.. The ranges for ordinates and 
abscissae are the same (units, seconds). Flow rate (ml/sec): (a) 0.885, (b) 0.95, (c) 1.05. 
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Fig. 4. Continued. 

whose numerical solutions are obtained by means of a standard variable-step 
fourth-order Runge-Kutta method in the modification due to Gill (see Butcher, 
1987). Equations (7) are integrated until x exceeds xc: thus the integration is 
performed back to xc by using the H6non (1982) method for the numerical 
computation of Poincar6 maps. In our calculations we have verified that in 
any case the fluid flow rate is always conserved. 

Table I gives the values of the parameters that we have kept fixed. The 
experimental behavior of a dripping faucet during the transition to chaos has 
been examined by several authors (Martien et  al., 1985; Ndfiez Y6pez et  al., 
1989; Wu et  al. ,  1989; Wu and Schelly, 1989; Cahalan et  al., 1990; Dreyer 
and Hickey, 1991). The experiments involve measurement of time intervals 
between successive drips. For each constant flow rate, the data are represented 
in a time delay diagram (t,+l versus t,) or discrete map. 
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The experimental investigations can be summarized as follows. At low 
flow rate, dripping is found to be periodic (period-1 and period-2 attractors). 
As the flow rate is varied and set to increasingly larger values, a period- 
doubling sequence leading, above a critical flow rate, to chaos appears; the 
system exhibits a broad range of  dynamical behavior, with many examples 
of strange attractors. Examples of an intermittent route to chaos, with period- 
3 and period-4 attractors, are also given (Dreyer and Hickey, 1991). Varying 
the surface tension dramatically changes the dynamics (Wu and Schelly, 
1989). 

As in both previous theoretical and experimental studies, we have 
focused our attention on the time interval t,, between successive drips• Figure 
2 shows the drip spectra of water versus R, with AM given in Fig. 2a by 
formula (i) and Fig. 2b formula (ii) of  (3) (the first 150 of  200 drops 
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Fig. 5. Dripping time delay diagrams for A M  :x v,,. Ranges and units as in Fig. 4. Flow 
rate: (a) 0.90, (b) 0.94, (c) 1.0, 

are removed). These are clear diagrams of bifurcations: in Fig 2a at 
R --~ 0.61 ml/sec there is a bifurcation from an attractor of  period 1 to an 
attractor of  period 2. As R is increased, successive bifurcations occur until 
strange periodic attractors appear. Analogous results are obtained in Fig 2b; 
up to R = 0.825 ml/sec the behavior is the same as in Fig. 2a, then a biperiodic 
dripping leading to chaos appears. We have used for model (i) a = 0.25 
c m -  1 sec, for model (ii) c~ = 0.025 g c m -  ~ sec-  l and x~. = O. 19 cm for both. 

The enlargement of the spectra in Fig. 3 reveals the flow rates at which 
characteristic behaviors occur: for instance, in Fig. 3a transitions to different 
attractors are easily seen; bistability can be observed in Fig. 3b around flow 
rates ranging up to 20 .92  ml/sec. Figures 4 and 5 show time delay diagrams 
at three selected flow rates; each of these diagrams contains 5 X 103 points 
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(the first 10 points are removed). It can be observed in Fig. 4 that the 
complexity of  the attractor grows with increasing R; a sharp change occurs 
at R = 1.025 ml/sec (see also Fig. 3a). An analogous change occurs for Fig. 
3b at R = 0.93 ml/sec. As it can be seen from Figs. 5 and 6 with AM 
proportional to the speed, the attractors seem to change from a period-2 state 
to a chaotic state, but the analysis of  the data shows two curious aspects of  
the time of release. First, one can observe the resemblance of the attractors 
in parts (b) and (c) of  Figs. 4 and 5 in spite of  the difference of the flow 
rate spectra: this can be explained by observing that in case (a), ~ = 0.25 
cm -1 sec, while in case (b), e~ = 0.025 g cm -I  sec; this similarity can be 
understood since at the threshold both calculated masses are of  the order of  
Mc -~ 0.1 g. The second aspect is evident in Fig. 6, where time series diagrams 
of Figs. 5a and 5b are shown: in both diagrams, after a long transitory chaotic 
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rhythm, the time intervals alternate, exhibiting biperioding dripping: this 
happens after 250 drops in case (a), but after 2200 drops in case (b); thus 
this effect is not evidenced by the dripping spectra of Figs. 2b and 3b, which 
contain 50 drops. This behavior appears at R = 0.95 ml/sec. An analogous 
effect happens for case (i) at R = 0.93 ml/sec; however, in this case a chaotic 
pattern transforms after 800 drips to a multiperiodic pattern. As far as we 
know, these phenomena are not reported in the experimental studies. 

We finish this section by showing in Fig. 7 the drip spectra at R -- 0.9 
ml/sec as a function of  the critical distance xc. These diagrams are useful in 
that they suggest a strong dependence of the model on this parameter; the 
spectra calculated at different flow rates can furnish useful indications in 
order to obtain different forms for the chaotic attractor. Observing Fig. 7b, 
one can see an anomalous decrease of the dripping time intervals as the 
critical distance xc grows in the case where the drop mass AM is taken 
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Fig. 8. Time series diagram for the drop interval of Fig. 4a. (b-e): Time delay diagrams of 
the four attractors of the time series in (a). (f) Sixty successive drop intervals connected with 
straight lines for enhanced visual effect. 

proportional to the drop speed v. This argument seems to privilege the model 
(i) over (ii) of relation (3). 

Moreover, all these results suggest that a correct model of a dripping 
faucet must contain a certain dependence among a, xc, and R. 

4. ATTRACTORS 

Figure 8 shows the case illustrated in Fig. 4a in greater detail: the time 
series diagrams show four patterns that evolve in the chaotic attractors of 
Figs. 4b and 4c. In the time delay diagrams of Figs 8b-8e the four attractors 
of the time series of Fig. 8a are shown separately. The shape of Fig. 8d can 
be obtained from the shape of Fig. 8c by a double reflection about the time 
axes. In Fig. 8f 60 successive drop intervals from the middle of the time 
series of Fig. 8a are connected with straight lines for enhanced visual effect 
in order to see more clearly the alternate periodic behavior of the drop 
time intervals. 

Some interesting maps are obtained upon varying both x,. and c~. Figure 
9 shows some attractors for case (i) of (3); these attractors are very similar 
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I 

to experimental attractors. The dependence on these parameters is evidenced 
on comparing the map of  Fig. 9b with that of  Fig. 9d, whose attractor structure 
is quite different. 

The effect of  changing the liquid surface tension has been also analyzed; 
results are reported in Fig. 10 for a flow rate of  0.95 ml/sec. It can be noted 
that the strange attractor of  Fig. 4b becomes biperiodic with decreasing 
surface tension (k = 450 dynes/cm), while it evolves into an attractor of 
more complex structure for k = 500 dynes/cm. 

Finally, we show some delay diagrams and the corresponding time series 
for the two-sphere model of Fig. lb. In Fig. 11 an attractor-type dinosaur is 
obtained with drop mass A M  ~ Move, while in Fig. 12, taking AM cc vc, we 
show a closed discrete attractor with a suggestive regularity in the time 
series behavior. 
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Thus with the present model several features of the dripping faucet 
behavior can be observed as closed-loop patterns and periodic or strange 
attractors. 

5. C O N C L U S I O N S  

The model of a dripping faucet we have presented in this paper repro- 
duces many of  the experimental behaviors. In addition, it contains a dynamics 
which reveals many interesting features. Further investigations can be per- 
formed in order to understand the nature of  various attractors and the effect 
of those parameters which are not varied in our analysis. This mathematical 
model displays in fact various forms of chaos and thus lends itself well to 
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.041 .042 

the representation of typical phenomena of nonlinear physics. The results of 
our work can be summarized as follows: 

(i) The differential equations (1) and (2), with one prefixed mechanism 
for the release of the drop, seem to us unable to reproduce all the characteristic 
patterns of the dripping faucet. 

(ii) The relevant nonlinearity required to yield chaos is given by the 
sudden changes at the threshold. 

(iii) A consistent definition of threshold is necessary in order to give 
unicity to the model. 

(iv) The mechanism of release of the drop with a mass proportional to 
momentum seems to be more realistic. 

(v) A link between the threshold parameters is necessary in order to 
obtain a more complete reproduction of experimental results. 

We think that further studies along the above lines can lead to a good 
refinement of the model. 
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NOTE ADDED IN PROOFS 

After submission of this paper for publication, the authors became 
acquainted with an article by J. C. Sartorelli, W. M. Gon~alves, and R. D. 
Pinto (Physical Review E, 49 (1994), 3963), in which experimental evidences 
of sudden changes from chaotic to periodic regimes of a dripping faucet have 
been reported. These results are very similar to those shown in Fig. 6a and 
6b of this paper and are considered by the authors as strong encouragement 
to continue the study of these phenomena. 
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